111 research outputs found

    Effect of field of view and monocular viewing on angular size judgements in an outdoor scene

    Get PDF
    Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators

    Band-gap solitons in nonlinear optically-induced lattices

    Full text link
    We introduce novel optical solitons that consist of a periodic and a spatially localized components coupled nonlinearly via cross-phase modulation. The spatially localized optical field can be treated as a gap soliton supported by the optically-induced nonlinear grating. We find different types of these band-gap composite solitons and demonstrate their dynamical stability.Comment: 4 pages, 5 figure

    The in-medium isovector pi N amplitude from low energy pion scattering

    Full text link
    Differential cross sections for elastic scattering of 21.5 MeV positive and negative pions by Si, Ca, Ni and Zr have been measured as part of a study of the pion-nucleus potential across threshold. The `anomalous' repulsion in the s-wave term was observed, as is the case with pionic atoms. The extra repulsion can be accounted for by a chiral-motivated model where the pion decay constant is modified in the medium. Unlike in pionic atoms, the anomaly cannot be removed by merely introducing an empirical on-shell energy dependence.Comment: 9 pages, 2 figures. Minor changes, to appear in PR

    Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude

    Full text link
    Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer. Absolute calibration was made by parallel measurements of Coulomb scattering of muons. Parameters of a pion-nucleus optical potential were obtained from fits to all eight angular distributions put together. The `anomalous' s-wave repulsion known from pionic atoms is clearly observed and could be removed by introducing a chiral-motivated density dependence of the isovector scattering amplitude, which also greatly improved the fits to the data. The empirical energy dependence of the isoscalar amplitude also improves the fits to the data but, contrary to what is found with pionic atoms, on its own is incapable of removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on uncertainties,extended discussion. To appear in PR

    Incidence and consequences of damage to insecticide-treated mosquito nets in Kenya

    Get PDF
    BACKGROUND: Efforts to improve the impact of long-lasting insecticidal nets (LLINs) should be informed by understanding of the causes of decay in effect. Holes in LLINs have been estimated to account for 7-11% of loss in effect on vectorial capacity for Plasmodium falciparum malaria in an analysis of repeated cross-sectional surveys of LLINs in Kenya. This does not account for the effect of holes as a cause of net attrition or non-use, which cannot be measured using only cross-sectional data. There is a need for estimates of how much these indirect effects of physical damage on use and attrition contribute to decay in effectiveness of LLINs. METHODS: Use, physical integrity, and survival were assessed in a cohort of 4514 LLINs followed for up to 4 years in Kenya. Flow diagrams were used to illustrate how the status of nets, in terms of categories of use, physical integrity, and attrition, changed between surveys carried out at 6-month intervals. A compartment model defined in terms of ordinary differential equations (ODEs) was used to estimate the transition rates between the categories. Effects of physical damage to LLINs on use and attrition were quantified by simulating counterfactuals in which there was no damage. RESULTS: Allowing for the direct effect of holes, the effect on use, and the effect on attrition, 18% of the impact on vectorial capacity was estimated to be lost because of damage. The estimated median lifetime of the LLINs was 2.9 years, but this was extended to 5.7 years in the counterfactual without physical damage. Nets that were in use were more likely to be in a damaged state than unused nets but use made little direct difference to LLIN lifetimes. Damage was reported as the reason for attrition for almost half of attrited nets, but the model estimated that almost all attrited nets had suffered some damage before attrition. CONCLUSIONS: Full quantification of the effects of damage will require measurement of the supply of new nets and of household stocks of unused nets, and also of their impacts on both net use and retention. The timing of mass distribution campaigns is less important than ensuring sufficient supply. In the Kenyan setting, nets acquired damage rapidly once use began and the damage led to rapid attrition. Increasing the robustness of nets could substantially increase their lifetime and impact but the impact of LLIN programmes on malaria transmission is ultimately limited by levels of use. Longitudinal analyses of net integrity data from different settings are needed to determine the importance of physical damage to nets as a driver of attrition and non-use, and the importance of frequent use as a cause of physical damage in different contexts

    Low Energy Analyzing Powers in Pion-Proton Elastic Scattering

    Full text link
    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.Comment: 15 pages, 4 figure

    Characterization of the radiation tolerance of cryogenic diodes for the High Luminosity LHC inner triplet circuit

    Get PDF
    Cryogenic bypass diodes are part of the baseline powering layout for the circuits of the new Nb3Sn based final focus magnets of the high luminosity Large Hadron Collider. They will protect the magnets against excessive transient voltages during a nonuniform quenching process. The diodes are located inside an extension to the magnet cryostat, operated in superfluid helium and exposed to ionizing radiation. Therefore, the radiation tolerance of different types of diodes has been tested at cryogenic temperatures in CERN’s CHARM irradiation test facility during its 2018 run. The forward bias characteristics, the turn-on voltage and the reverse blocking voltage of each diode were measured weekly at 4.2 K and 77 K, as a function of the accumulated radiation dose. The diodes were submitted to a total dose close to 12 kGy and a 1 MeV neutron equivalent fluence of 2.2×1014  cm−2. After the end of the irradiation program the annealing behavior of the diodes was tested by increasing the temperature slowly to 293 K. This paper describes the experimental setup, the measurement procedure and the analysis of the measurements performed during the irradiation program as well as the results of the annealing study

    Opto-Mechanical Pattern Formation in Cold Atoms

    Get PDF
    Transverse pattern formation in an optical cavity containing a cloud of cold two-level atoms is discussed. We show that density modulation becomes the dominant mechanism as the atomic temperature is reduced. Indeed, for low but achievable temperatures the internal degrees of freedom of the atoms can be neglected, and the system is well described by treating them as mobile dielectric particles. A linear stability analysis predicts the instability threshold and the spatial scale of the emergent pattern. Numerical simulations in one and two transverse dimensions confirm the instability and predict honeycomb and hexagonal density structures, respectively, for the blue and red detuned cases.Comment: submitted to Physical Review Letter

    Observation of dipole-mode vector solitons

    Full text link
    We report on the first experimental observation of a novel type of optical vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit
    corecore